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1 Introduction

The problem posed was, in essence, how do we estimate the probability distribution of
f(x) from the probability distribution of x? Here x is a large vector and f is a complex
function which can be expensive to evaluate. For Schlumberger’s applications f is a
computer simulator of a hydrocarbon reservoir, and x is a description of the geology of
the reservoir, which is uncertain. We might also want to update our distribution on f(x)
to include information relevant to some of the simulator output values. Typically this
would be production history for a reservoir that had been operational for some time, and
for which the simulator was being run forwards into the future to evaluate a possible
control regime.

We broke this problem into three parts. The first is reducing the dimensionality of the
input space, discussed in section 2. The second is performing the inferential calculations
despite only having a limited number of simulator evaluations. The calculations are
discussed in section 4, while the technology necessary to make these calculations feasible,
namely an emulator, is discussed in section 3. The final part is having available a number
of test problems for which we could compute exact solutions, for evaluative purposes.
Two different approaches are presented in sections 5 and 6, relating to flow in a porous
medium in the presence of narrow faults or cracks. These final two sections can be read
independently of the previous ones.

2 Dimensional Reduction

2.1 Grid-independent representation of fields

Many of the uncertain inputs to a reservoir simulator are fields. These include the scalar
porosity field and the permeability tensor, which are both 3D, and the aquifer pressure
and fault transmissibilities, which may be taken as 2D manifolds. Notionally these fields
are infinite-dimensional. However, because they are smooth we can hope to represent
them with acceptible fidelity using a finite number of quantities.

For inferential purposes we must restrict the number of quantities to, say, a few hundred
at most. This figure is likely to rise slowly as computing power increases, but it is and
will remain several orders of magnitude short of the number of grid cells in a modern
simulator. This means that current representations as values specified for each grid cell
are not tenable. This does not mean that we do not compute and use a value for each
grid cell at the point where we evaluate the simulator, but rather that these values must
be derived from from an underlying representation that is smoother.

Perhaps the strongest conclusion from the workshop is that we must find ways to represent
these fields in a grid-independent way. This involves two related challenges. First, we
must represent the field as an uncertain quantity, in a manner that allows the experts to
‘tune’ the behaviour of the realisations of the field according to their knowledge, and to
information from sources such as seismic studies and well-logs. We must also attempt to
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make this representation sensitive to the information contained in the production history,
for history-matching. In other words, if the production data want to tell us about the
mean permeability of the reservoir, then mean permeability should be a feature of our
representation. For this reason it seems natural to want to represent the features of
each field as an ordered collection of quantities going from highly aggregated to highly
localised. This is discussed in section 2.2.

The second challenge is to find a way to go from the field representation to the appropriate
value for any given grid cell, known generically as the problem of upscaling. For porosity
this is straightforward, since a simple average (integration of the field over the cell) would
seem to be approriate. The problem for permeability is known to be far less tractable.
In the workshop we discussed the problem of permeability upscaling and proposed an
approach based on physical insight, discussed in section 2.3.

2.2 Random field representations

For simplicity consider a real-valued scalar random field f defined on a vector-space with
representative element x. If we are uncertain about this field then we may describe our
uncertainty in terms of a mean function µ and a variance function κ, where

µ(x) := E
(
f(x) | x

)
(1)

κ(x, x′) := Cov
(
f(x), f(x′) | x, x′) . (2)

The basic theory of random fields is given in Bartlett (1978). In the Bayesian
intepretation of Kriging, a random field with given mean function and variance function
describes the prior distribution, which is then updated using observations. Details may
be found in Handcock and Stein (1993), and the references in Kennedy and O’Hagan
(2001). If the prior is taken to be gaussian then the conditional field is also gaussian;
more generally, the updated mean function is the best predictor of the field under the
principle of minimised quadratic loss. This is an example of the Bayes linear approach,
outlined in Goldstein (1999). This approach will be discussed below, in section 3.3.

As is typical in Bayesian applications, where there is lots of observational data the precise
choices for µ and κ do not matter very much, and it is not unreasonable to treat the
prior field as second-order stationary, i.e. with a constant mean function and a variance
function with a simple parameterisation that depends only on the vector x − x′. One
choice, which is appropriate for fields that are believed to have sample paths that are
infinitely differentiable (in the mean-squared sense), is

κ(x, x′) = σ2 exp
{
−θ ‖x − x′‖2

}
(3)

where ‖·‖ is the euclidean norm. With this choice it is necessary to specify the variance
σ2 and the ‘decay rate’ θ. The reciprocal of this decay rate controls what might be
termed the field’s correlation length (large decay rate implies short correlation length).

Where there is not much data, it is important to be able to incorporate much more
detailed prior knowledge, i.e. to make a quite precise statement about µ and κ. Often it
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is hard to do this directly, particularly while ensuring that κ remains positive definite.
One method discussed at the workshop was to start with a quite general mean and
variance (e.g., the stationary form given above) and then to introduce pseudo data with
which to condition the field. To give a simple example, suppose that the value of the
field was though to be close to 1 at location x. We could introduce a pseudo datum
taken at x with value 1. If we treated that datum as certain then by conditioning the
field we would force all of its realisations to pass through 1 at x; if we treated the pseudo
datum as noisy, say with standard deviation 0.1, then we could arrange for most of its
realisations to pass within 0.3 of 1 at x. By introducing a few of these pseudo data it
is possible to create quite a general structure in realisations of the random field. The
actual impact of each datum depends on the decay rate, and the presence of other data,
both pseudo and real. In the workshop we discussed presenting a sequence of realisations
of the field to the engineer with a visualisation tool, which would allow tuning of the
values and locations of the pseudo data to achieve the desired effect. It is important to
remember that some of the pseudo data could actually be located outside the reservoir.

We have not yet discussed the main advantage of a random field representation. This
type of representation lends itself naturally to a finite-dimensional reparameterisation.
We can choose a complete basis for the vector-space containing x, and then project the
field onto the basis. So, for example, we can write

f(x) =
∞∑

j=0

βj Lj(x) (4)

where B = {βj} are the fourier coefficients for the orthonormal basis L = {Lj}. As L is
known, all of the randomness of f is now contained in the joint distribution of B. We
can expect the contribution of the βj terms to the variation of f to vary according to
the order of Lj, and it follows that by a careful choice of basis we can get reasonably
close to representing f with only a moderate number of terms.

We compute the mean and variance of B using the underlying mean function and variance
function of f . For example, consider computing the mean of βj:

E
(
βj

)
= E

(〈f, Lj〉
)

= 〈E (
f
)
, Lj〉 = 〈µ, Lj〉 (5)

where 〈f, f ′〉 :=
∫

f(x) f ′(x) dx. A similar calculation using the variance function
gives the variances and covariances of B. A natural approach to deciding on a finite
representation for f is to compute the variances for lots of the coefficients in the basis,
and then keep as many as is necessary to have, say, 95% of the variation of the field when
averaged across the possible values for x. The variance contribution of the truncated
terms should be added back in, by appending a nugget term.

The choice of basis is up to the engineer, but a natural choice in the first instance is a
polynomial basis, namely the legendre polynomials shifted onto an appropriate interval.
Sticking, for simplicity, with a single dimension for x, L0 is a constant and so β0 picks up
the mean field value. Then β1 picks up the difference between left- and right-hand field
values, β2 the difference between middle and edge values, and so on. The B coefficients
become the grid-free representation of the field. A realisation of the field is created by
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generating a realisation of the B coefficients, probably using a gaussian or a multivariate
t distribution. Learning about the field, e.g. by calibration, is learning about the B
coefficients. In this way it is possible, by our choice of L, to direct the calibration data
towards those aspects of the field that are thought by the engineer to be most relevent
to the data itself, e.g. the mean field value (β0 in the legendre basis).

2.3 A grid-free permeability model

We spent a session brain-storming the problem of permeability upscaling, and the
implications that this might have for a grid-free representation of the permeability tensor.
We thought we might reduce the permeability field to a network of channels extending
through the reservoir. Then the upscaling problem for a given cell block consists of
counting pathways that enter the cell at one given face, and leave at another. We thought
we might be able to represent beliefs about permeability in terms of beliefs about the
parameters of a random network defined on vertices that filled, in some fashion, the
reservoir. This network need not be a simple lattice: in general it would be described
by a collection of vertices at specified locations with a given neighbourhood structure.

Typically the parameters of a random network describe the probability of finding a link
between two neighbouring vertices depending on the other links in the localised region.
In this way we can control the density of the pathways, and the distribution of their
lengths. These macro-scale features would seem to be strongly related to permeability,
as described above. Thus if the parameters themselves are described as a field over the
reservoir, then this would allow us to describe how permeability varied over the reservoir.
This parameter field could be quite smooth and low-dimensional, allowing us to represent
the permeability tensor in a finite and hopefully small collection of values, perhaps using
the projection method outlined above.

We discussed an experiment to see whether this approach would be useful. We could
take a collection of vertices in a 3-D space, and within that space identify a grid cell. For
a given set of random network parameters we could generate a number of realisations
of a permeability network. For each realisation we could compute the effective cell
permeability by treating the network as narrow channels through an impermeable
medium. We could then study how the mean and variance of the effective permeability
varied as we varied the random network parameters, and as we varied the grid cell size.
This would seem to be a natural experiment for a PhD student.

3 Introducing an Emulator

In this section and in section 4 we treat the dimensional-reduction problem as solved.
In other words, the engineers’ uncertainty about the inputs to the simulator has been
reduced to a probability distribution over a vector of moderate length.
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3.1 The role of the emulator

An emulator is a statistical model for the simulator. The key point to grasp is that
is is more than a simple interpolator. For any finite collection of simulator inputs the
emulator describes the joint probability distribution of the resulting outputs. In the
simplest case, for any given input value the emulator tells us what the simulator might
say were it to be evaluated at that input, in terms of a mean and variance. Typically
a simulator has many outputs, so this is in fact a mean vector and a variance matrix.
We would often take our emulator to be a gaussian random field over the input space,
possibly after transformations, in which case the simulator output at any given input is
a gaussian random vector.

The key role of the emulator is to replace the simulator in inferential calculations. We
are going to want to sample the input space, and without an emulator we would have to
evaluate the simulator for every point we sample. With the emulator we can replace the
evaluation of the simulator at a known input with a sample from the emulator at that
input. This sample only takes a moment, and so we can get literally millions of samples
from our emulator in the time it takes to evaluate the simulator once. The importance
of this is discussed in section 4.

3.2 Building an emulator

An emulator is another example of a random field, and therefore we retain the previous
notation. Now the simulator is f , and the vector of simulator inputs is x. By and large
we expect emulators to have a much more complicated structure than simple physical
random fields, and methods for emulator construction are under active development in
the statistical community: Kennedy and O’Hagan (2001) and Craig et al. (2001) give
two alternative methods. The former is relatively close to Kriging with vague prior
information, while the latter, designed explicitly for cases like reservoir modelling in
which the simulator is very expensive to evaluate, tends to make greater demands on
the expert and on alternative sources of information about the simulator.

The Craig et al. approach is to construct an emulator of the form

fi(x) =
∑
j∈Ji

βij L
(i)
j (x∗

(i)) + εi(x) i = 1, . . . k. (6)

Here x∗
(i) is a collection of active variables for each output, being the variables to which

fi is most responsive. The basis functions are selected individually for each output, and
the residual term εi(x) typically contains a smooth random field in x∗

(i) and a nugget for

excluded variation in x \ x∗
(i). It is natural to set the decay rate of the random field to

account for the lowest-order term excluded from the basis. Thus if the basis comprises
linear, quadratic and two-way interaction terms then the decay rate is chosen to give
realisations that look at least cubic. The dominant part of this emulator is the collection
of uncertain coefficients B = {βij}.
An interesting empirical observation is that although the time-path of simulator outputs
can be complicated, the response of that time-path to variations in the simulator inputs

D-6



is often quite simple. Suppose that f(x) represents an output at a well measured through
time. In this case fi(x) is the observation at one particular time. Now the collection(
f1(x), f2(x), . . . , fk(x)

)
is a time series that can show complex temporal behaviour (in

terms of simple basis functions like polynomials); for example it might be exponential or
sigmoidal. But the response of that collection to changes in x is quite simple. Typical
patterns would be a vertical shift in the whole curve, or a tilt, or a bend. What this
means in practice is that the sets Ji tend to be quite small, while still explaining a large
amount of the variation in fi to changes in x. So a simulator may be quite a complicated
function, but if a lot of that complexity happens in the time-domain it is still possible
to build cheap and effective emulators.

There are several ways to build emulators such as (6). Where the simulator is not too
expensive to evaluate, we may start with a collection of scoping runs : enough for us to
do some intensive data analysis to pick out good choices for the basis functions and to
estimate the mean and variance of B. Another possibility is to build a coarse version
of the simulator to do the scoping runs. A third is to squeeze as much information
as possible from the evaluations of the simulator by having it output derivatives. For
example a few evaluations including derivative information may be enough to identify
the active variables for each output. Automatic code differentiators may be helpful here.

Our choices for the emulator are not set in stone, and may be modified, within reason,
in response to diagnostic information. Diagnostics are crucial, and are discussed at the
end of section 3.3.

3.3 Updating the emulator

The emulator allows us to compute the mean vector and covariance matrix of the outputs
for any given finite collection of inputs. Suppose we have evaluated the simulator n times,
at inputs X =

(
x1, . . . , xn

)
, so that we have a vector of outputs F =

(
f(x1), . . . , f(xn)

)
.

If we want to compute the mean and variance of the simulator at another input x �∈ X
we can do it using the updating formulae

E
(
f(x) | F

)
= E

(
f(x)

)
+ Cov

(
f(x), F

)
Var

(
F

)−1 (
F − E

(
F

) )
(7)

Var
(
f(x) | F

)
= Var

(
f(x)

) − Cov
(
f(x), F

)
Var

(
F

)−1
Cov

(
F, f(x)

)
(8)

where x and X are given throughout. If we assume that f is a gaussian random field
then these are the conditional mean and variance of a gaussian distribution. But there
is a more general justification under the Bayes linear approach, and we would refer to
these as the adjusted mean and variance, with no further distributional specification.
Obviously the expensive part of this calculation is the inversion of the variance matrix,
which is of size kn × kn, but this only has to be done once per evaluation. Also, it can
be done sequentially per evaluation by partioning, although this method is suspected of
introducing numerical instability.

In the case where x ∈ X, say x = xn, it is easy to verify that E
(
f(x)

)
= f(xn) and

Var
(
f(x)

)
= 0. This just states that the emulator interpolates the evaluations of the

simulator, as you might expect. It is often observed that the behaviour of the emulator
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inside the convex hull of X is usually fairly robust to the precise specification of B and
ε, particularly when f is thought to be quite smooth. What is less often appreciated,
however, is that the proportion of the input space occupied by the convex hull declines
dramatically with the size of the input space: typically f(x) is an extrapolation. This
suggests that great care should be taken when constructing the emulator, and that
diagnostics should be computed.

The easiest and most intuitive diagnostic is the one-step-ahead prediction. Each time we
evaluate the simulator, we use the emulator to predict the outcome. Then we compare
the actual outcome with its predicted mean and variance. Single-value statistics like the
Mahalanobis distance are useful, but usually a more detailed examination is called for, to
see whether alarming mis-predictions can be attributed to an input, or can be localised
in space or in time. Although technically double-counting the data, a certain amount
of intervention to correct the behaviour of the emulator is not unreasonable. This will
usually take the form of increasing (or, occasionally, decreasing) the variances of some
of the B coefficients.

4 Inference

There are two types of inferential calculation we might want to perform: uncertainty
analysis and calibrated prediction. Uncertainty analysis is learning about how uncertainty
in the simulator inputs feeds through into uncertainty in the simulator outputs. In
other words, given a probability distribution Pr

(
x∗), what is the distribution of f(x∗)?

Calibrated prediction introduces data on some of the simulator outputs, say z. The
problem is: given Pr

(
x∗) and z, what is the joint distribution of

(
x∗, f(x∗)

)
? In both of

these problems x∗ is the correct simulator input, the value of which is uncertain. Note
that statisticians active in the area of simulator-based inference reject outright the notion
that there can be a correct input for an imperfect simulator, but the generalisation,
discussed for example in Craig et al. (2001) and Goldstein and Rougier (2004), is in
principle straightforward, and so will not be considered here. Uncertainty analysis is in
fact a part of calibrated prediction, and so the two will be discussed together.

4.1 Calibrated prediction

Our objective is to describe the joint distribution of
(
x∗, f(x∗)

)
, either unconditionally

(uncertainty analysis), or conditionally on z (calibrated prediction). In both cases we
will also condition on the set of n simulator evaluations, namely F . The precise method
we use, for there are many, will depend on how large the problem is, how the simulator
is expected to behave, and what kind of information is required from the analysis. For
example, we can summarise the target distribution in terms of a random sample, or
in terms of an estimate of the mean, variance, and other characteristics. A simple
introduction to sampling-based inference is given in Smith and Gelfand (1992), while
details of the various methods are available in Ripley (1987), Robert and Casella (1999)
or Evans and Swartz (2000).
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For illustration, consider the case where we want to find the mean of x∗ conditional
on the simulator evaluations F and the data z. This is the probabilistic equivalent of
history matching. We must describe the measurement errors in z in terms of a likelihood
function

Lz

(
y
)

:= Pr
(
z | y

)
(9)

where y := f(x∗) is the true reservoir value. Often this likelihood function is quite
straightforward; e.g., in the case where each observation is subject to an independent
gaussian measurement error with zero mean and known variance. A natural estimator
of the mean is then

Q̂m :=
m∑

j=1

wj xj for which

{
xj

iid∼ Pr
(
x∗)

yj
iid∼ Pr

(
f(xj) | F

) (10)

where wj ∝ Lz

(
yj

)
and

∑m
j=1 wj = 1. In words, we sample a value xj from Pr

(
x∗), then

we sample an output from the emulator at input value xj, namely yj. This value of yj

determines the weight in the weighted mean calculation, so that yj values that better
match the data z get a larger weight.

The estimator Q̂m has the property that limm→∞ Q̂m = E
(
x∗ | z, F

)
, by the Strong Law

of Large Numbers. Hence the importance of replacing the simulator with an emulator:
we need to be able to make m large in order to have confidence in the result, and this
is not possible if we only have the simulator, and that simulator takes anything greater
than a few seconds to evaluate.

If we wanted the mean value for f(x∗), where the simulator f might be run forwards into
the future, for example to evaluate a location for a new well, then we would simply replace
xj in Q̂m with yj. We could also generalise Q̂m in the obvious way to compute the variance
of

(
x∗, f(x∗)

)
, or higher moments such as the skewness and kurtosis. Alternatively we

could estimate probabilities by replacing xj by the indicator function of any given event,
e.g. using I(yjv > 10) would estimate the probability that output v of the simulator was
greater than 10.

If we wanted to do simple uncertainty analysis, i.e. if we do not have any data so z = ∅,
then we replace wj by 1/m. Obviously the conditional mean of x∗ in this case is the same
as the mean of Pr

(
x∗), but by replacing xj with yj we can compute the mean of f(x∗), and

its higher moments, based on our n evaluations F . Therefore in the fully probabilistic
approach the difference between uncertainty analysis and calibrated prediction comes
down simply to modifying the weighted sum according to the likelihood.

Note that Craig et al. (1996, 1997, 1998) have suggested an alternative approach to
calibration, which is more straightforward to implement. Its principle is to rule out
regions of the input space according to z, using a measure they term ‘implausibility’.
It still uses an emulator, but typically the emulator can be simpler, because it is
not necessary when using the implausibility measure to represent the full multivariate
structure of the simulator output. This approach has been adopted in a commercial
software tool, EnABLE, available from Energy SciTech Ltd. (http://www.enscitech.
com).
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4.2 Optimal design

When the simulator is expensive to evaluate, we want to pick each input at which we
evaluate with care. Note that where we have an emulator we do not have to pick the
simulator evaluation points according to Pr

(
x∗); rather we have to sample x∗ according

to Pr
(
x∗) and then sample the emulator at each value. This leaves it open for us to

choose each evaluation of the simulator according to some kind of optimality criterion.
The most natural one is to look at the reduction in predictive variance for various possible
choices for xn+1. For each candidate value x for xn+1 we pretend we have evaluated the
simulator at x, and we use the emulator mean to generate a synthetic output value.
Then we perform the inferential calculations as though we had n + 1 evaluations rather
than n, for example those outlined in section 4.1, and score x according to its ability
to reduce the variance of inputs or outputs about which we are particularly interested.
Obviously we cannot expect to find the best candidate for xn+1 in this way, but we can
at least avoid making a bad choice.

This approach to sequential design operates one step ahead. If the simulator is currently
evaluating xn+1 then we can be computing a good value for xn+2 offline by using the
emulator to synthesise values for both f(xn+1) and f(x) where x is our candidate value
for xn+2. If we know we have a fixed number of evaluations left to do then we can go
further. Suppose we have 4 evaluations left in our budget. We can simultaneously choose
(x, x′, x′′, x′′′) as candidate values for xn+1, . . . , xn+4. Then, once we are evaluating our
chosen xn+1, we can re-choose xn+2, . . . , xn+4, and so on. Obviously this approach is more
powerful than one-step-ahead because it builds into our choice of the next evaluation the
knowledge of the total number of evaluations available.

5 Darcy flow in an oil reservoir

In this section we explore some computable examples of fluid flow in a porous medium,
subject to constraints.

5.1 Darcy flow around a thin region of different permeability

Consider fluid within a porous medium, flowing in two dimensions under Darcy’s law
around the thin slit like geometry (with aspect ratio ε) between the curves y = εf+(x)
and y = εf−(x) for |x| < a (shown in figure 1). Here

∇ · (k∇p) = 0 in R, where k =

{
k1 in Ωc

k2 in Ω.

Writing p = p1 in Ωc and p = p2 in Ω gives the equivalent problem

∇2p1 = 0 in Ωc (11)

∇2p2 = 0 in Ω (12)

p1 = p2 and k1
∂p1

∂n
= k2

∂p2

∂n
on ∂Ω. (13)
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y

x

Ω

y = εf−

y = εf+

Ωc

k = k1

∇2p1 = 0

∇2p2 = 0

k = k2

∂Ω

x = ax = −a

Figure 1: Geometry of the flow considered in section 5.1

There turn out to be two cases of particular interest: when the ratio of the permeabilities
λ = k1/k2 is (i) large, λ 
 1 and (ii) small, λ � 1. Before considering these cases in
detail we rescale y (in Ω) with ε, so that y = εY , and rewrite equations (11)–(13) in the
form

∇2p1 = 0 in Ωc (14)

∂p2

∂Y 2
+ ε2 ∂2p2

∂x2
= 0 for f−(x) < y < f+(x) , |x| < a (15)

with

p1 = p2

λ

(
∂p1

∂y
− εf+′∂p1

∂x

)
=

(
1

ε

∂p2

∂Y
− εf+′∂p2

∂x

)

 on y = εf+(x), |x| < a (16)

and

p1 = p2

λ

(
∂p1

∂y
− εf−′∂p1

∂x

)
=

(
1

ε

∂p2

∂Y
− εf−′∂p2

∂x

)

 on y = εf−(x), |x| < a . (17)

Case (i) λ 
 1

In this instance the canonical scaling is λ = 1/ε (the behaviour in the cases 1 � λ � 1/ε
and λ 
 1/ε can be deduced from the canonical case). The expansions for p1 and p2

proceed as follows:

p1 = p
(0)
1 + · · · and p2 = p

(0)
2 + · · · .
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The leading order problem for p2 is thus

∂2p
(0)
2

∂Y 2
= 0 , (18)

∂p
(0)
2

∂Y

∣∣∣∣∣
Y =f+(x)

=
∂p

(0)
1

∂y

∣∣∣∣∣
y=0+

, p
(0)
2 |Y =f+(x) = p

(0)
1 |y=0+ , (19)

∂p
(0)
2

∂Y

∣∣∣∣∣
Y =f−(x)

=
∂p

(0)
1

∂y

∣∣∣∣∣
y=0−

, p
(0)
2 |Y =f−(x) = p

(0)
1 |y=0− . (20)

Solving (18) gives

p
(0)
2 = A(x)Y + B(x).

Applying boundary conditions (19a) and (20a) implies

A(x) =
∂p

(0)
1

∂y

∣∣∣∣∣
y=0+

=
∂p

(0)
1

∂y

∣∣∣∣∣
y=0−

,

while (19b) and (20b) imply

A(x)(f+(x) − f−(x)) = p
(0)
1 |y=0+ − p

(0)
1 |y=0− .

It follows that[
∂p

(0)
1

∂y

]y=0+

y=0−

= 0 ,
[
p

(0)
1

]y=0+

y=0−
=

∂p
(0)
1

∂y

∣∣∣∣∣
y=0

(f+(x) − f−(x)) , |x| < a. (21)

Implications. Here we have considered a crack filled with a much less permeable
material than its surrounds, k2 � k1. In the case where the crack is thin, εf+ − εf− =
o(1/λ) = o(k2/k1), it has no effect on the flow in the surrounding region at leading order.
If, however, the crack thickness lies in the range 1 
 εf+−εf− 
 k2/k1 then it imposes
the condition

∂p
(0)
1

∂y

∣∣∣∣∣
y=0

= 0 , |x| < a (22)

on the surrounding flow. In other words it is, to leading order, impermeable to the flow.
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Case (ii) λ � 1

Here we consider the case where the fault/crack is filled with a much more permeable
material than its surrounds k2 
 k1 (i.e. λ � 1). In this case the canonical scaling is
λ = ε and the expansions of p1 and p2 proceed as follows:

p1 = p
(0)
1 + · · · and p2 = p

(0)
2 + ε2p

(1)
2 .

The leading order problem for p
(0)
2 is thus

∂2p
(0)
2

∂Y 2
= 0 ,

∂p
(0)
2

∂Y

∣∣∣∣∣
Y =f+(x)

= 0 , p
(0)
2 |Y =f+(x) = p

(0)
1 |y=0+ ,

∂p
(0)
2

∂Y

∣∣∣∣∣
Y =f−(x)

= 0 , p
(0)
2 |Y =f−(x) = p

(0)
1 |y=0− ,

from which it follows that

p
(0)
2 = B(x) where B(x) = p

(0)
1 |y=0− = p

(0)
1 |y=0+ . (23)

In order to find further conditions on p
(0)
1 it is necessary to proceed to a higher order in

p2, where we find

∂2p
(1)
2

∂Y 2
+ B′′(x) = 0 , (24)

∂p
(1)
2

∂Y
+ f+′∂p

(0)
2

∂x

∣∣∣∣∣
Y =f+

=
∂p

(0)
1

∂Y

∣∣∣∣∣
y=0+

, (25)

∂p
(1)
2

∂Y
+ f−′∂p

(0)
2

∂x

∣∣∣∣∣
Y =f−

=
∂p

(0)
1

∂Y

∣∣∣∣∣
y=0−

. (26)

Integrating (24) between Y = f− and Y = f+ and applying the conditions (25) and (26)
at these two points results in the solvability condition[

∂p
(0)
1

∂y

]y=0+

y=0−

= − ∂

∂x

(
(f+ − f−)B′(x)

)
.

Noting that B(x) is defined in terms of p
(0)
1 by (23) we can rewrite this solvability

condition and (23) as

[
p

(0)
1

]y=0+

y=0−
= 0,

[
∂p

(0)
1

∂y

]y=0+

y=0−

= − ∂

∂x

(
(f+ − f−)

∂

∂x
p

(0)
1 |y=0

)
. (27)
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Implications. Here we have considered a crack filled with a material which is much
more permeable than its surrounds, k2 
 k1. In the case where the crack is thin,
εf+ − εf− = o(λ) = o(k1/k2), it has no effect on the flow in the surrounding region at
leading order. If, however, the crack thickness lies in the range 1 
 εf+ − εf− 
 k1/k2

then

∂

∂x
p

(0)
1 |y=0 =

const.

(f+ − f−)
, |x| < a.

It follows, since (f+(a) − f−(a)) = (f+(−a) − f−(−a)) = 0, that the constant is zero,
and the condition imposed on the surrounding flow by the crack/fault is

p
(0)
1 |y=0 = 0. (28)

Thus, the fault acts a channel along which flow may propagate with negligible pressure
drop.

5.2 Darcy flow around linear faults

Motivated by the above observations, we now consider the idealised flow problem in
which an array of two-dimensional slender faults within an otherwise homogeneous
porous medium (of constant permeability k, which we now take to be 1 without loss
of generality) may be modelled by an array of straight lines, of arbitrary lengths and
orientations, on which either

∂p

∂n
= 0 (an impermeable fault),

or

p = 0 (an infinitely permeable fault).

An oncoming uniform flow at infinity is assumed (though other far-field conditions could
easily be dealt with). The general picture is illustrated in figure 2. Away from the faults
the fluid velocity is given by the gradient of the pressure,

u = −∇p,

where by incompressibility ∇2p = 0.

Consider first a single fault in an oncoming uniform flow. Since the flow is two-
dimensional, and the pressure is harmonic, we may define a complex potential for the
flow by

w(z) = −p + iψ,

where z = x + iy, and ψ(x, y) is a streamfunction for the (steady) flow. The complex-
conjugate velocity, u − iv, is then given by the derivative of the complex potential,
dw/dz. For the cases under consideration we may write down the complex potential
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∂p
∂n

= 0

∂p
∂n

= 0

p = 0

p = 0

p = 0

p = 0

∂p
∂n

= 0

UNIFORM

FLOW

∂p
∂n

= 0

Figure 2: Schematic showing an array of arbitrary idealised faults
in an oncoming uniform flow
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Figure 3: Streamline plots for the dipole singularity represented by
a single fault in the far-field, (a) in the case k = 0, (b) in the case
k = ∞. In both cases U = 1, a = 1, α = π/6, β = −π/6.

(see, for example, Milne-Thomson, 1996) for the k = 0 case, and the k = ∞ case is
readily obtained from this impermeable flat plate solution:

k = 0 : w0(z) = Ue−iβ
(
z cos(α − β) − i sin(α − β)

√
z2 − a2e2iβ

)
, (29)

k = ∞ : w∞(z) = Ue−iβ
(−iz sin(α − β) + cos(α − β)

√
z2 − a2e2iβ

)
, (30)

where U is the flow speed at infinity, α is the angle this oncoming flow makes with the
positive x-axis, β is the angle the fault makes with the x-axis, and 2a is the length of
the fault (which is centred on z = 0). Far away from the fault we may expand these
complex potentials in inverse powers of z, and we find that when viewed from afar, the
faults look like dipole singularities in the flow field. Specifically, we find that for large
|z|,

w0(z) ∼ Uze−iα + iUeiβ a2 sin(α − β)

2z
+ · · · , (31)

w∞(z) ∼ Uze−iα − Ueiβ a2 cos(α − β)

2z
+ · · · . (32)

Streamlines for these singularities are given in figure 3.

When more than one fault is present, we would like to include extra dipole terms in
(31) or (32), located at points z0j, z∞j, with associated sizes a0j, a∞j and angles β0j,
β∞j, to be specified (the subscripts 0j, ∞j refer to the jth singularity of type k = 0, ∞,
respectively). In general we cannot just add in such terms naively, as the dipoles will
interact with one another, thus affecting the free-stream flow Ueiα experienced by each
dipole. Thus in general there will be extra undetermined parameters U0j, U∞j and α0j,
α∞j associated with each dipole. However, if the far-field flow is sufficiently strong that
it dominates any dipole-dipole interactions we can take U and α to be fixed as a first
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Figure 4: Streamline plots for two ‘k = 0’ dipole singularities
with parameters z01 = 1 + i, z02 = −1 − i, a01 = 1, a02 = 3/4,
β01 = −π/4, β02 = π/8; and three ‘k = ∞’ dipole singularities
with parameters z∞1 = 0, z∞2 = −1 + 2i, z∞3 = 2 − i, a∞1 =
3/2, a∞2 = 2, a∞3 = 3/4, β∞1 = −π/6, β∞2 = π/2, β∞3 = −π/3.
The (dominant) free-stream flow is given by u + iv = eiπ/6.

approximation, writing

w(z) = Uze−iα +
iU

2

N0∑
j=1

eiβ0j
a2

0j sin(α − β0j)

z − z0j

− U

2

N∞∑
j=1

eiβ∞j
a2
∞j cos(α − β∞j)

z − z∞j

.

Example streamlines for a flow of this kind are given in figure 4, which models five faults
in an oncoming flow u + iv = eiπ/6.

There are two of type k = 0, with z01 = 1 + i, z02 = −1 − i, a01 = 1, a02 = 3/4,
β01 = −π/4, β02 = π/8; and three of type k = ∞, with parameters z∞1 = 0, z∞2 = −1+
2i, z∞3 = 2− i, a∞1 = 3/2, a∞2 = 2, a∞3 = 3/4, β∞1 = −π/6, β∞2 = π/2, β∞3 = −π/3.
Note that the z∞3 singularity, being orientated perpendicular to the flow, has no effect
on the streamlines. The equivalent situation for a k = 0 singularity would be when it is
oriented parallel to the oncoming flow, which would then pass by unaffected.

In general, accounting for dipole-dipole interactions, the total streamfunction for an
oncoming flow parallel to the x-axis, containing an arbitrary distribution of dipole
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singularities, will be given by

w(z) = Uz +

N0∑
j=1

w0j(z) +
N∞∑
j=1

w∞j(z), (33)

where

w0j(z) = iU0je
iβ0j

a2
0j sin(α0j − β0j)

2(z − z0j)
(34)

w∞j(z) = −U∞je
iβ∞j

a2
∞j cos(α∞j − β∞j)

2(z − z∞j)
. (35)

The parameters U , β0j, β∞j, a0j, a∞j, z0j, z∞j, are specified (the oncoming far-field flow
speed; the inclinations of the faults to the x-axis; the sizes of the faults; and their
locations), but the U0j, U∞j, α0j, α∞j are to be determined by requiring that the uniform
oncoming streams U0j exp(iα0j), U∞j exp(iα∞j) experienced by each dipole are due to
the combination of the far-field flow plus the flow generated by the other dipoles (but
not itself), evaluated at the location of the dipole in question. Thus, these local ‘uniform
streams’ must satisfy

U0je
−iα0j =

d

dz

(
w(z) − w0j(z)

)∣∣∣∣
z=z0j

, (36)

U∞je
−iα∞j =

d

dz

(
w(z) − w∞j(z)

)∣∣∣∣
z=z∞j

, (37)

giving N0+N∞ complex equations for the 2(N0+N∞) real unknowns U0j, U∞j, α0j, α∞j.

An example of the streamlines when this dipole-dipole interaction is taken into account
is given in figure 5. Figure 6 gives the corresponding streamlines when the interaction is
neglected.

Summary: We can model an arbitrary array of interacting linear faults as a system of
dipole singularities (of specified positions, strengths and orientations) in an oncoming
(two-dimensional) far-field flow. Equations (33)–(37) give the closed system of equations
required for the complex potential of the desired flow.

D-18



-1 0 1 2 3

-2

-1

0

1

2

Figure 5: Streamline plots for interacting dipoles: one ‘k = 0’ dipole singularity with
parameters z01 = 0, a01 = 1, β01 = π/4; and two ‘k = ∞’ dipole singularities with
parameters z∞1 = 1 + i, z∞2 = 2 − i, a∞1 = 1, a∞2 = 1, β∞1 = −π/4, β∞2 = 0.
The free-stream flow is given by u + iv = 1 (U = 1). Solving equations (36)–(37)
yields α01 = 0.0848435, α∞1 = −0.170154, α∞2 = −0.0810698, and U01 = 0.907291,
U∞1 = 1.06146, U∞2 = 0.957504 (all α’s would be zero and all U ’s equal to 1 if the
interaction were neglected).
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Figure 6: As for figure 5, but with the dipole interaction neglected. Thus in (33)–
(35), the parameters are z01 = 0, a01 = 1, β01 = π/4, and z∞1 = 1 + i, z∞2 = 2 − i,
a∞1 = 1, a∞2 = 1, β∞1 = −π/4, β∞2 = 0, and αij = 0, Uij = 1 for i = 0, ∞.
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6 Boundary Element Methods

This section considers the solution of the flow problem by the Boundary Element Method
(BEM).

6.1 Outline of the problem

The two-dimensional flow in a porous medium is governed by Darcy’s law

v = −k∇p

where p is the pressure and k is the permeability. The flow is conservative and so

∇ · v = 0.

Combining these equations gives

∇(−k∇p) = 0. (38)

Consider a canonical problem where equation (38) is solved in a rectangular region
containing one or more obstacles that have either zero or infinite permeability. With the
exception of the obstacles, the permeability in the flow region is assumed to be constant.
The flow is driven by a pressure difference from left to right. The top and bottom
boundaries are assumed be impermeable and hence there is no normal flow. Similarly on
the boundary of the separate obstacles with zero permeability there is no normal flow.
On the boundary of an obstacle with infinite permeability the pressure is constant. The
value of this constant is determined by the subsidiary condition∮

C

k
∂p

∂n
ds = 0

where C is the boundary of the obstacle.

Define the flow region R to be the rectangle (0, L)× (0, H) excluding the obstacles. Let
there be NB obstacles having zero permeability with boundaries Bk , k = 1, . . . NB, and
let there be NC obstacles having infinite permeability with boundaries Ck , k = 1, . . . NC .
It is assumed that none of the obstacles intersect. Then

∇2p = 0 in R (39)

with the boundary conditions

p (0, y) = p 0, p (L, y) = 0,
∂p (x, 0)

∂n
= 0,

∂p (x,H)

∂n
= 0; (40)

∂p

∂n
= 0 on Bk, k = 1, . . . NB; (41)

p = constant on Ck,

∮
Ck

∂p

∂n
ds = 0, k = 1, . . . NC . (42)
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6.2 Boundary element solution

Equations (39)–(42) will be solved numerically using the direct form of the boundary
element method (BEM). Let δR denote the complete boundary of the region R, i.e. the
boundary of the rectangle and each of the obstacles. From Green’s theorem, equation (39)
can be rewritten as

α

2π
p(a) =

∮
δR

(
p(r)

∂G

∂n
(r; a) − G(r; a)

∂p

∂n
(r)

)
ds, (43)

where G(r; a) = 1
2π

ln |r − a|, a is some fixed point on δR, and α is the internal angle
between the two tangents to the boundary at a. If the slope of δR is continuous then
α = π.

To calculate an approximate solution to this integral equation, the boundary δR
is divided into small segments (elements). The functions p and (∂p/∂n) are both
approximated by piecewise polynomial functions of arc length s using nodal values on
the elements.

Let the nodes be ri, i = 1, . . . ,M and let the variables p and (∂p/∂n) have nodal values
p i and ui respectively. Writing the piecewise polynomial basis functions as {φi(s)} then

p 

M∑

j=1

pj φj(s) and
∂p

∂n



M∑
j=1

uj φj(s). (44)

Equation (43) is valid for any point a on δR and so applying it to the nodes {ri} in turn
and substituting the approximations for p and (∂p/∂n) defined by equations (44) gives

αi

2π
pi =

∮
δR

(
M∑

j=1

pj φj(s)
∂G

∂n
(r; ri) − G(r; ri)

M∑
j=1

uj φj(s)

)
ds , i = 1, . . . ,M,

where αi is the internal angle between the two tangents to the boundary at ri.

Reversing the order of integration and summation then gives the linear algebraic system

Hp = Gu , (45)

where

Gi,j =

∮
δR

φj(s)G(r; ri) ds and Hi,j =

∮
δR

φj(s)
∂G

∂n
(r; ri) ds − αi

2π
δi,j

and the vectors of unknowns are the nodal values of p and (∂p/∂n), p = (p1, . . . , pM)
and u = (u1, . . . , uM).

Equation (45) provides M equations in 2M unknowns. From the boundary conditions
(40), the value of p i or ui is known at each node on the boundary of the rectangle and can
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be substituted directly into (45). Similarly, from the boundary conditions (41), the value
of ui is known at each node on the boundary, Bk, of the obstacles with zero permeability
and can also be substituted directly into (45).

The situation on the boundary of the obstacles with infinite permeability is different
since neither unknown is given explicitly. Let Sk be the set of nodes on the boundary Ck

and introduce additional variables pM+1, pM+2, . . . pM+NC
. Then the first of boundary

conditions (42) becomes
p i = pM+k i ∈ Sk

and pM+k is substituted for each pi on Ck into equation (45).

Applying the approximations for (∂p/∂n) defined by (44) to the second of the boundary
conditions (42) gives the additional equations

∑
j∈Sk

Bjuj = 0, k = 1, . . . , NC , where Bj =

∮
δR

φj(s)ds. (46)

Equations (45) and (46) can now be rearranged as a set of (M + NC) linear equations
for one unknown at each of the M nodes and the NC additional pressure variables.

6.3 Comparison of methods

The solution by BEM is computationally much cheaper than a full CFD computation,
but the limitation of a BEM solution is that the values of p and (∂p/∂n) are only
computed on the boundaries of the flow region (including the obstacles). However it
provides key information to allow experiments with a range of obstacles. In particular
the normal velocity at the outlet (= k(∂p/∂n)) is computed and this can be trivially
integrated (numerically) to give the total outlet flux. The normal velocity around each
of the obstacles with infinitely permeability is also computed and so the effect of such
an obstacle on the flow can be seen. Similarly the pressure around each of the obstacles
with zero permeability is computed.

The solution by BEM allows greater flexibilty than an analytic solution (e.g. complex
variable). In particular there can be any number of obstacles of arbitrary shape in the
flow, and the flow region can have arbitrary boundaries.

6.4 Results

The following results are intended to be illustrative of numerical experiments that could
be conducted. All computations were performed using a rectangle of length L = 3
and width H = 2. The permeability was taken to k = 1 and a pressure difference of
p 0 = 3 was imposed. Hence the undisturbed flow has a uniform velocity of U = 1 in the
x-direction and the total flux through the outlet at x = 3 is 2.
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A single obstacle in the form of a thin rectangle representing a slit was introduced
with its centre at the centre of the flow region. The slit had length a = 1 and width
w = 0.05. The slit was placed at an angle β to the x-axis and the cases of a zero or
infinite permeability slit were considered separately.

The computations were all performed using the simplest elements — piecewise constant
approximations on straight line elements.

Slit with zero permeability

If a slit with zero permeability having zero width were placed parallel to the x-axis
(β = 0) it would have no effect on the flow. However using a small width of w = 0.05
produces a small decrease in total outlet flux. A series of experiments were conducted
using various values of β and the results are summarized in figure 7. As the angle of
incidence is increased the outlet flux decreases further, as shown by the solid line in
figure 7. When β = π/2, the effect is greatest with the slit perpendicular to the flow and
blocking half the width of the channel.
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2.2

2.3

2.4

2.5

β

F
lu

x

Single centrally placed slit − output flux against angle

zero permeability
infinite permeability

Figure 7: Single obstacle: outlet flux against angle of incidence.

Slit with infinite permeability

If a slit with infinite permeability having zero width were placed perpendicular to the
x-axis (β = π/2) it would also have no effect on the flow. However using a small width
of w = 0.05 produces a small increase in total outlet flux. As the angle of incidence is
decreased the outlet flux increases further, as shown by the dotted line in figure 7. When
β = 0, the effect is greatest, with the slit parallel to the flow and providing a ‘shortcut’.

A graph of the normal velocity around the slit (plotted against arc length) for the case
β = π/4 is shown in figure 8. A positive value indicates flow into the main flow region,
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and a negative value indicates flow into the slit. The total flux through the slit in this case
is 1.1197, which is approximately half of the outlet flux of 2.1588. The slit only extends
for 35% of the width of the channel and so the attraction of the infinite permeability slit
is seen.
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1
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Data 23bx − Normal velocity into flow region along slit

Figure 8: Computed normal velocity along slit of infinite permeability (β = π/4).

Comparison with complex variable solution

The BEM results were validated by comparison with the complex variable solution of
flow past a slit of zero width in an infinite flow field (see section 5). The results for both
the zero permeabilty and infinite permeability slits agreed well qualitatively. Note that
since the flow field conditions are different we would not expect very close agreement.

For the particular case of a slit with infinite permeability, the complex variable solution
gives the normal velocity along the slit as

un = U

(
r√

a2 − r2
cos β ± sin β

)
. (47)

Figure 9 shows a graph of the normal velocity calculated from equation (47) for the
particular case β = π/4. The similarity between figures 8 and 9 is easily seen.
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Figure 9: Normal velocity along slit of infinite permeability (exact solution, β = π/4).
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