
Dipcoating, wherein an object is withdrawn from a liquid bath, re-
taining a thin layer of liquid which then dries, is perhaps the simplest
of coating techniques. SOLA Optical asked the MISe to investigate
this process as a means of applying a protective coating to spec-
tacle lenses. The theory, as proposed by the group, involves the
'lubrication' form of the equations of slow viscous flow. This yields
an estimate of the wet coating thickness variation, which in turn
depends on the liquid properties, the pull rate, and the lens curva-
ture. When this thickness is reduced by the volatile fraction of the
coating, predicted thicknesses are in rough agreement with reported
values. Once applied, the liquid film drains downward and this ef-
fect is modelled numerically. An outline of a more complete model,
allowing evaporation and drying, is also presented.

The SOLA Optical Company supplied the group with data obtained for a
variety of lenses, pulled at various speeds, and using two different coating com-
pounds. Typically lenses to be coated varied between 65 and 75 mm in diameter
and had at least one curved face. The lenses were pulled vertically upward, out
of the coating bath, at speeds U between 10 and 50 cm per minute. A simpli-
fied schematic drawing is shown in figure 1. The nonevaporating component,
termed 'solids', constituted between 10 and 20 per cent of the initial coating
liquid formulation. While the final dry coating has significant nonuniformities
in thickness, a single coating thickness is reported for each lens. This may be
interpreted as an average value.

The dipcoating process has important advantages for spectacle lenses if it
can be made to produce satisfactory performance. It may replace spin coating,
in which a quantity of liquid is placed upon a lens blank and then spun at high
speed; the excess is thrown off and a uniform final thickness results. However
spin coating is inherently more involved and also requires each lens to be treated
individually.

The mathematical description of the dipcoating process involves the flow of
a viscous liquid with a free surface. Surface tension acts on the surface and is
important in determining the coating thickness. Until sufficient volatiles have
evaporated, the drawn liquid layer remains mobile and drains downward under
the action of gravity. A complete description of the process must also include a



Figure 1: A lens being drawn upward from a liquid bath, showing a magnified
view on the convex face.

model for drying with consequent loss of coating volume and large increase in
viscosity. In addition, it may be that certain coatings have complicated rheo-
logical behavior and their effective viscosity may depend on the local details of
their motion in addition to the local value of the solids fraction. Preliminary
estimation for this process, as developed below, will assume a relatively simple
model wherein only the unsteady flow of a Newtonian, nonevaporating liquid
will be considered.

Steady-state vertical withdrawal of a moving surface or 'substrate' from a
Newtonian liquid bath was first treated by Landau and Levich (1942). Their
theory gives good estimates of the coating thickness when the capillary number,
defined as the product of fluid viscosity times drawing speed, divided by the
surface tension, is a sufficiently small number, as it is in the present application.
In the following section, the basic components of this theory will be outlined,
along with modifications necessary to treat the varying inclination of the lens
elements when a curved lens is withdrawn from the bath. This may be thought
of as the original coating distribution. The drainage of this initial distribution
is treated in section 3 via a numerical solution of an approximate unsteady
equation. It will be seen that drainage will result in a substantial redistribution of



the coating in times of the order of one minute. Both two and three dimensional
simulation results will be shown; the simpler two-dimensional case appears to
capture the important features except for some transverse, or 'sideways' flow
along the lower edge of the lens.

A more complicated theory, allowing for evaporation and drying, will be
presented in section 4. While no numerical results will be given here, this more
complete theory has been used with significant success in related problems. The
concluding section will discuss the status of the modelling effect relative to the
known experimental results. The need for further experimental measurements
will be highlighted.

We consider the steady-state flow of Newtonian or almost-Newtonian fluids
in a thin layer of height h with a stress-free surface. With the additional as-
sumptions that the motion is slow, and the free-surface is almost parallel to the
substrate, the governing momentum equation may be approximated as

Here subscripts signify partial differentiation, JL is viscosity, p is pressure, u is the
velocity parallel to the substrate, z and yare coordinates measured parallel and
normal to the substrate respectively. Equation (1) is the basis of the lubrication
theory and its asymptotic validity has been well established. (See e.g. Sherman,
1990). Because of the thinness of the liquid layer, p depends only on z and t,
and, assuming JL is also independent of y, (1) can be integrated immediately to
give a parabolic velocity profile in y. The pressure gradient within the thin layer
is due to changes in the curvature of the free surface, upon which surface tension
u acts. Since the slope of the free surface is assumed small, the surface curvature
is approximately hxx and the pressure gradient within the layer is uhxxx. IT the
pressure-driven flow is exactly balanced by the backwards motion of the wall,
i.e. wall motion in the negative z direction with speed U, it is possible to have
a steady-state free surface. The flux Q within the layer is given by

lh uh3hxxx
Q = udz = --- - Uh = -UhOC)

o 3JL

where hOC)is a constant or reference layer thickness. Equation (2) is an ordinary
differential equation for steady-state coating flow with a free surface. All physical
constants can be absorbed in the scaling



Equation (4) can be used to represent the shape of the coating film on an ob-
ject that is being continuously drawn from a liquid bath. A discussion of the
mathematical properties of this, and closely-related equations can be found in
the recent survey paper of Tuck and Schwartz (1990). IT, starting from an al-
most uniform film, the equation is integrated in the positive! direction, it will
ultimately yield a constant second derivative Hee as ! goes to 00. This limiting
value of the second derivative, determined by numerical integration, is about
0.643. Because the limiting value is obtained while the slope remains suffi-
ciently small, the second derivative may be identified with the limiting value of
the surface curvature 1/ R. Returning to the original variables, using equation
(3), one obtains, as in Bretherton (1961),

(
3J.LU) 2/3

hoo / R = 0.643 ---;;-

R may be interpreted as the radius of curvature of the liquid surface where the
drawn film meets the bath. This 'meniscus' shape is determined solely by a
balance of capillary and gravity pressures and appears, since the drawn film is
thin, identical to the static meniscus on a straight wall. The radius of curvature
of the static meniscus, for a vertical wall, is

R = (~)1/2
2pg

Combining this expression for R with equation (5) gives an estimate for the
constant film thickness in steady vertical drawing from a liquid bath:

hoo = 0.946 (J.LU)2/3 (1'-1/6 (pg r1/2 •

Apart from an erroneous value for the numerical constant in equation (6), this
is the result given by Landau and Levich. Some data on film thicknesses has
been provided by SOLA. They give the drawing speed U, viscosity J.L, and solids
fraction Co as well as measured dry coating thicknesses for each case. A simple
theoretical prediction, that may be compared with the data, is based on the
assumption that the wet film thickness is as given by equation (6), and that no
further flow takes place. The dry film thickness is the wet thickness multiplied
by the supplied value of Co. No details of the lens shape are included in such a
model; nor is it clear, in either the data or the simple theory, at which points, on
a nonplanar lens, the stated thicknesses are to be found. Figure 2 compares pre-
dictions of dry thickness versus drawing speed with reported measurements for
two different coating formulations. While the simple theory appears to correctly



predict the magnitude of the dry thicknesses and gives reasonable agreement
for low drawing speeds, it overpredicts the measured thicknesses at the highest
speeds by a factor of almost two. Formulation A is a liquid of 9.5 Cp viscosity
and a solids fraction Co of .225 while, for Formulation B, the corresponding fig-
ures are 5.6 Cp and .133 . Certain of the relevant physical variables in equation
(6) were not reported by SOLA. We have assumed the following typical values
for organic liquids: 0' = 30 dynes/em and specific weight pg = 900 dynes/cm3•

The error brackets on the data, 0.3 p.m, are as given by SOLA. Finally, it should
be mentioned that only two of the four supplied data sets are shown in figure
2. The ones not shown are both for Formulation Aj one set was quite similar to
results shown for this formulation, while the other appears anomalous in that it
gives thicknesses that uniformly exceed the theoretical prediction.

'Formulation A' -
'For lation A' ~
, mulation B'
Formulation B' ~

t
! ....

, .
......

0.4 0.6
Drawing speed, em/see

The validity of the formula in (6) has been established, by Levich (1962)
and others, for continuous drawing processes, by comparison with experimentally
measured values, for values of capillary number (p.U / 0') < 0 (10-2). The data in
figure 2 satisfy this requirement. It is likely, therefore, that thinning of coating,
due to gravity drainage, is important for the larger values of original thickness.
This will be discussed further in section 3. For curved lenses, an additional
requirement concerning the smallness of the film-formation time, must also be
met, as discussed below.



Candidate lenses all have one convex surface, with the reverse side either
concave or fiat. The local model given above can easily be extended to curved
surfaces. Thus a spherical convex surface, when pulled vertically from a bath,
initially has a 'meniscus turning angle,' Le. the angle between the surface tangent
plane and the horizontal bath where they meet, that is greater than 7r /2. This
angle diminishes continuously as the lens is withdrawn, and is less than a right
angle for the 'lower' half of the lens. If a is taken as the angle between a surface
tangent and a vertically-upward vector, a 'local' theory assumes that the laid-
down wet coating will be the same as that for a straight plate being drawn out
of the bath at angle a.

The radius of curvature of the meniscus, required in equation (5), now de-
pends on a and the static calculation needs to be modified. Consider the liquid
surface extending from the 'contact' point on the plate, where its downward
inclination angle is 00 = 7r /2 - a, to the horizontal bath which may be taken as
z = O. Letting 0 be the general inclination of the free surface from the horizontal,
the balance of pressures at the surface is given by

u (~~) = u (::) (~:) = pgz.

Now dz / ds = sin 0 and (7) is a first order differential equation for O(z) that can
be integrated immediately. Far away from the wall the liquid surface is fiat,
giving the boundary condition 0 = 0 at y = O. The radius of curvature at the
contact point can now be found from the elevation there, using (7), as

R(a) = (~)1/2 (1- sina)-1/2.
2pg

For a lens drawn vertically upward at speed U, the effective drawing speed for
an inclined element is U/ cos a and this modification also needs to be introduced
into equation (6). The modified a-dependent initial coating thickness is

The steady-state film thickness on an inclined plate appears to have been first
treated by Wilson (1982).

Two further points should be made concerning the local applicability of equa-
tion (8). For a spherical cap lens drawn upward, the local angle a is constant on
any horizontal level. Thus the longitudinal curvature does not introduce any fur-
ther complication; and the wet film thickness is invariant horizontally. Secondly,
the local use of (8), an infinite plane result, requires some justification. Fun-
damentally this requires that a have negligible change in the distance required



to 'set up' the film. From the scaling in (3) and the result (6), this distance is
O(Ca1/3Lc) where Lc is the 'capillary length' Ju/(pg). The fractional change
in thickness over this scale !i.hoc;/hoc; can be shown to be O(Ca1/3Lc/po) where
Po is the radius of curvature of the lens. In the present application, a typical
value for this parameter is 10-4•

Until such time as the volatile component has largely evaporated, the applied
film will drain downward under the action of gravity. The profile shape will
change with time. Calculations, for this process, can be made by use of the
two-dimensional model equation

subject to the initial condition that h( s, 0) is given, and the boundary conditions
are that the flux is zero at the edges,

where s is arc length and s = 0, L are the upper and lower ends of the lens
respectively. For a plane vertical lens, according to the simple theory of the last
section, h(s,O) can be equated to the constant value hoc; given by equation (5)
above. Iflens curvature is considered, then h(s, 0) can be taken as hoc; [a(s)] from
equation (8); here, the specified function, giving inclination angle a in terms of
arc length, is particularly simple for a circular-arc lens of radius Po where

Equation (9) is made dimensionless, with parameters absorbed in the scaling by
taking

_ (Uho)1/3 __ L2/3h1/3-
S - S - c 0 s,pg

_ (3J.LL~/3) _
t - 5/3 t.

pgho
Here ho is the drawn wet film height on a vertical plate, which can be written
as



h(s,O) = (coso:)-2/3(1- sin 0:)-1/2 .

Equation (10) has been solved numerically using a finite-difference scheme.
Time integration is done implicitly to ensure stability. Details of a similar scheme
can be found in Moriarty et ai. (1991). For a two-dimensional convex lens profile
(L = 70mm, Po = 100mm) and parameter values corresponding to Formulation
A, drainage histories for two draw speeds, U = 100 mm/min and 500 mm/min,
are shown in figures 3 and 4. Profiles are shown, for each case, at 0, 30, and
60 seconds. For the low speed case, the profile over most of the lens changes
little from the prediction of equation (8). The general tendency remains for the
coating to be thicker at the top (left side in the figure) of the lens. A thick edge
forms at the lower boundary, reaching a height of about 3ho at t = 60 sec. At
the middle of the lens, the thickness is only a little greater than predicted by the
simple theory. IT one now were to assume that flow terminates after 60 seconds,
at which time the coating dries, the rather close agreement between theory and
experiment in figure 2, for low speeds, can be understood.

The situation is quite different for the higher speed case, where the drawn
film is much thicker, shown in figure 4. There after 60 seconds, a much greater
fractional drainage has occurred. The height of the thick lower edge is about 16
times ho. The general tendency is for the film to be thicker at the bottom and,
at the center, after 60 seconds, the local thickness is about 0.8ho. This provides
at least a qualitative understanding for the overprediction of the simple theory
in the higher-speed cases in figure 2.

For both cases shown, the evolution of the profile in the neighborhood of
the top does not depend on capillary forces. The shape variation there is in
accordance with the prediction of Jeffreys (1930) who used the method of char-
acteristics to solve the first-order partial differential equation that results when
the surface tension term in (9) is neglected.

While gravity drainage seems to explain qualitative features of the experi-
mental results, certain comments need to be made concerning the quantitative
correctness of the above numerical predictions. (i) The nominal value of 60 see
for flow, followed by drying in place, is somewhat arbitrary; it does, however,
reflect the approximate interval before polymerization that was reported to the
Group. The assumption that the viscosity remains constant during the flow pe-
riod is a gross approximation. This will be discussed further in the next section.
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(ii) A more correct lubrication equation, for a curved lens surface, replacing (9)
is

3JLht = - (pgh3cosa-pgh3hssina+uh3hsss)s (11)
reflecting the local drainage behaviour on an inclined lens element. Thus the
tangential component of gravity is reduced by the factor cos a and a normal
component of gravity also appears. This latter component can tend to either
level or 'de-level' the film, according to whether a is greater than or less than
zero. In particular, it may cause film instability on the lower half of a convex
lens. To ascertain the importance of these modifications, a case was run using
the improved equation (11). For a lens whose radius of curvature is 100 mm,
the maximum inclination, either positive or negative, is about 20 degrees from
the vertical. The differences between the use of the two equations were rather
small, and, unless lenses of significantly greater curvature need to be considered,
the more complex equation is not warranted. (iii) It has been assumed, in the
simulations, that the lens is completely coated during drawing before downward
draining is allowed. This is potentially a serious limitation, but is one that could
be corrected in a more detailed model. Clearly downward drainage commences
immediately after withdrawal of each lens element. At low speeds, e.g. 100
mm/min as in figure 3, the withdrawal time for a 70 mm diameter lens is 42
sec. This is a significant fraction of the 60 sec nominal drainage time. However,
apart from the height of the 'fat edge' on the bottom, a large change is not
expected since relatively little flow occurs. For the high speed case, omission
of immediate drainage is perhaps more serious; although, at 500 mm/min, the
withdrawal time is only about 8 seconds.

At somewhat greater computational cost, it is possible to calculate three-
dimensional drainage. Such an unsteady calculation is desirable in order to
determine the effect of horizontal flow components. An alternating-direction,
partially-implicit finite difference scheme has been developed for these problems.
It is similar in principle to the ADI method, developed for the linear diffusion
equation as discussed by Peaceman and Rachford (1955). The partial differential
equation, replacing (10) is

where V' is the two-dimensional operator (8/ 8z, 8/ 8y) and (z, y) is an othogonal
coordinate system on the surface of an almost planar lens.

Because a rather fine mesh is needed to resolve the developing fat edge at the
lens bottom, a smaller-diameter lens was used as a test case. The (z, y) mesh
employed had the dimensions 180 x 90 and the lens was taken to be planar. A
no-flux condition was enforced on the circular boundary. Results are shown in
figures (5a) and (5b) for dimensionless time i = 3.4 . In (5a), for reference pur-
poses, the calculated two-dimensional profile is shown. Note that the maximum



height of the fat edge is 2.63ho. In the three-dimensional case, in figure (5b),
where only one half of a bilaterally-symmetric profile is shown, the maximum lip
or edge thickness, on the centerline, is calculated to be 3.67ho, the greater height
resulting from side flow along the lower edge of the lens. The results shown in
figure (5b) include both a perspective view of the free surface, as well as a set
of equi-height contours. They show some similarity to the steady-state, or final,
solutions calculated by Tuck and Schwartz (1991). Because of the nondimension-
alization used, the results of figures (5) pertain to a family of physical situations.
For drawing speed U = 100 mm/min and the lens diameter L = 12.0 mm, the
elapsed time is 29 sec, while for U = 500 mm/min and L = 17.3 mm, the elapsed
time is 4.9 sec. No difficulty, apart from a significant increase in computational
load, is anticipated in the three-dimensional calculation for 'full-size' lenses.

3

The assumption that the viscosity of the liquid coating remains constant
is a serious limitation for highly volatile liquids, such as used in the present
application. Typically, viscosity is a strong function of component fractions for
a complex liquid and a significant increase in viscosity could occur on a time
scale of one minute or less. The simplest theory that may capture this effect
involves the use of a two-component model.



The liquid is taken to consist of two components termed "resin" (or "solids")
and "solvent"; only the solvent component is assumed to be volatile. The resin
fraction, or concentration c, is taken to be uniform across the thin film. The
validity of this "well-mixed" assumption rests upon certain assumptions con-
cerning species diffusion, evaporation rate, and pressure gradients. Let E be
the evaporation rate, with dimensions of thickness per unit time. E will be a
function of the local value of c, in general. If Tdry ,.... hi E is a characteristic time
for drying and Tdiff ,....h2 In(r) is the characteristic diffusion time, where n(r) is
the diffusion coefficient for resin in the bulk liquid, uniformity of c across the
layer requires that

h ~ n(r)IE.

This criterion can be satisfied for sufficiently thin layers.

The concentration changes due to evaporation, convection, and diffusion
along the film according to

Ct = (~) c - (~) Cs + n(r)css'

where n is an experimentally determined constant (0 ~ n ~ 1) and Eo is a
constant with units of velocity. Equations (14) and (15) incorporate the basic
result that regions of thin coating dry faster than regions of thick coating.



The viscosity is taken to depend on concentration; a suitable law, after
Patton (1979) is

1!..- = A exp (Be) (16)
po

where A and B are empirically derived constants and Po is the initial viscosity.
The evolution equation for the surface shape must be modified by inclusion of
an evaporation term and the viscosity is now variable in space and time; thus,
for example, the simple equation (9) is replaced by

. [h3
]ht = - 3p (pg + O'hsss) s - E(s, t).

Equations (14) - (17) form a complete system, to be solved numerically, that
incorporates gravity drainage, evaporation, and drying.

It may be that other physical effects need to be incorporated. Often, when a
coating compound dries, the surface tension changes. This is the case for alkyd
paints, for example. If surface tension is a function of concentration, surface
tractions will develop that tend to drive the coating to regions where 0' is greater,
as discussed in Landau and Lifshitz (1959). More complex rheological laws are
needed if the viscosity is observed to be a function of flow rate. Surfactants may
also be present in the coating compound and their diffusion and transport will
affect the flow. Modeling studies including both surface-tension-gradient and
complex rheology for liquid coatings may be found in Schwartz and Eley (1994)
and Weidner et aI. (1994).

The experimental results presented to the MISG reported three major de-
fects in the final dry films, for drawn coatings. These were (i) long wavelength
variation in thickness, leading to evenly-spaced interference fringes, (ii) a thick
edge or lip at the bottom of coated lens blanks, and (iii) periodic undulations
in coating thickness, with wavelengths of about 2 mID. Measured average, or
central, thicknesses were reported as a function of drawing speed, resin concen-
tration, and initial viscosity. For low-speed drawing, the Landau-Levich theory,
discussed in section 2, provides good estimates of thicknesses, as well as pro-
viding an explanation for long wavelength variation in thickness. At the higher
speeds, drainage has been shown to lead to uniform thickness gradients with
thicker coating near the bottom of the lens. In all cases, drainage produces pro-
nounced thick edges on the bottom. Simulation results reported here do not, as
yet, provide an explanation for short wavelength undulations. It is possible that
they arise during drying and that the improved model, outlined in section 4, will



reproduce them. We note that the extent of the lower fat edge, which scales as
L~3h~/3, is in the neighbourhood of 2 mm, and that, immediately above the fat
edge, the coating is relatively thin. This thin region may be expected to dry
relatively rapidly and become less mobile. Liquid may then 'pile-up' behind it,
producing another fat edge, and a thin region above it. This recurring process,
during drainage, may lead to the reported periodic undulations.

Clearly the most uniform coatings are produced at slow withdrawal rates,
when drainage is less important. Variations in thickness due to lens curvature
could be mitigated by varying the drawing speed, in accordance with the varying
inclination angle, as the lens is pulled from the bath. This may not constitute
a practical solution for several reasons, however; very low speeds will produce
coatings that may be too thin, and variable drawing speed would not seem to
be consistent with large-batch processing.

Tailoring the properties of the coating to the application is perhaps a more
promising approach. By implementing a more complicated numerical model, as
in section 4, suitable combinations of solids fraction, viscosity, and drying rate
may be established. Model development will also require more experimental
data. It is especially important to obtain detailed measurements of final coating
profiles, information concerning drying rates and viscosity variation with solids
fraction. Considering the scale of SOLA's business and the economic benefit from
simple, rapid coating operations, additional research on this problem would seem
to be warranted.

A number of people participated in the discussion of this challenging prob-
lem. They included David Blest, Vinicio Bolli, Glenn Fulford, Vladimir Ger-
shkovich, H. A. Joseph, Kerry Landman, Tony Miller, Graeme Pettet, Len
Schwartz, David Scullen, David Standingford, Ernie Tuck, and Lee White. The
calculations presented here were performed after the meeting by Len Schwartz.
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