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1. Introduction and Preview. \

This report describes a mathematical model for the fluid motion and the heat transfer in a heat exchanger
which gradually becomes clogged by particle deposition on the walls.

The heat exchanger consists of 170 tubes arranged in a hexagonal grid, with saturated steam passing
along their insides and condensing so that its latent heat is transferred to the fuel oil which thus rises
significantly in temperature. Deposits are formed on the outside of the tubes and they form a fouling layer
which increases the resistance to heat transfer.

The problem consists of first finding a model which can be used to evaluate the amount of fouling in the
heat exchanger assuming that we know the inlet and outlet temperatures of the oil, its mass flow rate, and
the steam temperature. Secondly we wish to develop a model to predict the formation of thg fouling layer.

As a first step we write down conservation equations for the fluid motion and the heat transfer. As
a simplifying approximation we model the tube bundle as a parallel-plate heat exchanger. For the present
we ignore the fact that the flow paths through the system are probably complicated due the presence of
baffles etc. Evaluation of the Reynolds and Peclet numbers allows us to make use of ‘lubrication theory’
approximations. The chemical mechanism responsible for fouling is uncertain, and accordingly we propose
several models for this, deferring a selection until appropriate data is available. We also mention briefly the
numerical techniques we feel would be best suited to efficient solution of the proposed models.

To reduce the system of parabolic equations to a more tractable format we derive some averaged equa-
tions. These may prove useful in developing a simple model that could be used to calibrate on-line instru-
mentation for monitoring the heat exchanger fouling process as a function of time.

Lastly, we discuss the conclusions drawn from the work so far and highlight the major requirements for
additional data. A summary of feasible future extensions is provided.

An appendix is provided to explain in detail the geometrical considerations involved in our choice of
a parallel-plate analogue. In another appendix we discuss the present model in light of a similar problem
considered previously by J.R. Ockendon and H. Ockendon.
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2. Governing Equations for fluid regime.

For reasons of tractability we consider a 2 dimensional problem by considering a parallel plate heat exchanger.
This approximation simplifies the mathematics and computational requirements greatly while retaining the
essential elements of the problem. The dimensions of the parallel plates are chosen to preserve the mass flux
and velocity of the oil, and are considered in more detail in appendix 1.

The fouling process requires about two years to transform a new heat exchanger into a terminally clogged
state, so that on the time scale of a fluid element passing through the system we 'may treat the geometry as
static. Accordingly we consider the steady-state incompressible Navier-Stokes equations with temperature

dependent viscosity

(uéf‘-ﬂﬂf =220 (o), 2 (0 2.1
P\ %o dy) ~ 9z ' oz Koz dy u&y ! (2.1)
(uav+ v\ 6P+ ] v +_3_ dv (2.2)
P\"0z ""8y) T "oy T3 \Haz ) T 5y Moy ) '
du Hv
s 5—17..0. (2.3)

The heat equation, neglecting viscous dissipation, is
aT aT 9*T AT
o (v +5) =+ (354 57) .

where T is the oil temperature, and we have written p for the oil density, ¢y as the specific heat, k as the
thermal conductivity, and u(T) as the temperature-dependent oil viscosity. We use the usual lubrication

approximations to scale the variables as follows e
z~ L, y~h, U ~ Up, v~ Vo, T~ T, P~ Po, 124 ~.Ho (25)

where L is the length of the heat exchanger, u, is the mean fluid velocity, & is the distance between the
surface of the fouling and the midpoint of the parallel plates, v, = o, P, = pou, /eh and p, is the viscosity
at some typical temperature T,. This gives

ou du 8P . 8 ou) 0 du
€Re (‘u'gg +v-@-) =% +€ %2 (#5;) + 5y (#31/) ) (2.6)
v dv apP 8 v 8 v :
2 — B i 4 — P p— T
eRe(uam-}-vay) 8y+£ %2 (uam)-i»e 3y<u6y)’ (2.7
du v 8T oT ,0°T 8T
E-}--a—y—(), ePe(uE;-f-vE;)—E -5;-2--{"@, (2.8,9)
where
_ puoh _ pepuoch _hk
Re = o Pe = o £= I (2.10)

We can now estimate these important parameters. First, taking h = 0.25¢cm, and L = 350 cm gives

e=T7.14x10"%~ 1073 (2.11)
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For Re we use p = 0.75gem™3, u, = 79cm s}, v, = 0.3 Stokes ( based on inlet temperature of 70 °C ) to
give

Rein ~ 661 Reout ~ 329) (2.12, 13)
so that Re varies by a factor of 5 éhroughout the system, with the overall bounds

3x107% < e?Re < 2 x 1074, (2.14)

allowing us to neglect ¢ and e?Re terms. To estimate the Peclet number we use p = 0.75gcm™3, k, =

0.12Wm~1°C~1, ¢, = 1800 Kg~' °C™?, yielding

h
Pe = i’%’- ~22x10%  ePe~ 16. (2.15)

o

The simplified model, with ePe ~ 18, is

opP 8 du apP du v
—_— = — — — — —_— 2.
= (pay> 5% =0 5 ta=Y (2.16,17,18)
8T  oT o’T
ePe (u— +v 3y) e (2.19)

P can be eliminated from these governing equations, so we must now look only for boundary conditions for

u, v and 7. On the channel mid-plane y = 0 we have a line of symmetry and hence

du T
= —_— = —_ =0, .
y=0 = 3 0, v =0, 7 (2.20,21,22)

On the layer of deposit, with surface at y = h(z), we have

8
y=h = u=0, wv=0, —k%:H(T—T,), (2.23,24,25)

assuming no-slip conditions there. The heat-flux condition incorporates several assumptions which are
discussed below.

Consider a section through the tube wall, and attempt to find a single composite conductivity due to
both the metal of the tubes and any fouling adhering to them. Suppose the tube wall is of thickness d with
thermal conductivity kr, and that the fouling layer is thickness I(z) with conductivity kr. The heat flux Q
can be calculated by assuming 1-dimensional quasi-steady flow, to give the relations

L (T, =T) = H(T_,—T):k?-z, (2.26)

1( )
where all the variables are in dimensional form, T is the temperature at the oil-fouling interface, T} is the
temperature at the fouling-wall interface, and T, is the known steam temperature,v and H is the net heat

transfer coefficient across the tube and fouling material. Eliminating T; gives the relation

8T I(z)
3= T, - T), /\ =k ( - ) (2.27, 28)

Note that when the fouling layer is absent ) represents the metal’s resistance to heat transfer, but as the

fouling layer thickens ) becomes dominated by the deposited material.
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3. Governing equations for layer formation.
The exact mechanism responsible for the fouling effect is uncertain and we present here three models, each
appropriate to different chemical processes. The information available at the Study Group was insufficient
to enable us to select the most appropriate choice; and if more detail is impossible then all three could be
solved and the results compared with experimental data.

The fouling process takes place on a much slower time-scale than the fluid processes previously discussed
and may be treated as pseudo-steady state on a time-scale of days. Numerically this allows us to de-couple

the two regimes to a large extent.

Mechanism 1 . It is suggested that small molecular complexes ( fouling pre-cursors ) are formed within
the oil when heated, and that these particles adhere to the walls whenever the fluid motion brings them
sufficiently near. Taking C as the concentration of pre-cursors in the bulk oil, this could be modelled by the

equation
d d d ac
with boundary conditions
ac ac
z=0 = 0, - =0, —vC _—= =h, 3.2,3,
Clymo =0 any=0 0 vC + D= = (Clym (3.2,3,4)

where (T') is the temperature dependent body formation rate, k is the present thickness of the deposit, and
( is a coefficient representing the rate at which pre-cursors adhere to the wall. The diffusion coefficient D

should also include an effective dispersive component to allow for swirling within the oil. In this scenario

the rate of wall growth is given by
dh
'd't— = —7CC_,y=hy e (35)
where 4 is a scale factor dependent on the molecular size of the fouling pre-cursors, .and we note that

h decreases as the channe] becomes increasingly clogged.

Mechanism 2. It is possible that the wall growth occurs primarily due to some polymerisation reaction
occurring on the wall surface between the existing fouling and the oil, and that the pre-cursor formation

is irrelevant. In this case we do not require an equation for C, and instead have the single temperature-

dependent growth equation
dh
& -1, (36)

where, lacking any better evidence, we would assume f to have a modified Arrhenius form, for instance f

T° exp(—E/RT).

Mechanism 3. The real growth mechanism is almost certainly a combination of the above two sug-
gestions. Mechanism 1 assumes that adherence is purely passive, whereas mechanism 2 assumes that there
are always sufficient pre-cursors-available for ‘burn-on’ at the wall. If neither mechanism can be shown a
priori to be dominant, we may combine them by taking ¢ = ¢(T') in equation (3.4) so that the proportion of

pre-cursors adhering to the walls is temperature dependent.
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4. Numerical Formulation.

We may eliminate the pressure P from the fluid velocity equations by direct differentiation and substitution

to get
9? u :
e vm)=o » )
and upon introducing the usual Cartesian stream function 4 such that u = %’yﬁ, v = -—%%, our eq\iations
" may be written in the form
& A 8y 0T 8¢ 3T> 8T
— T)— =0 Pel ——-—— | = .
ay? (ﬂ( )3y2 ) ! ere (By 8z Oz By oy?’ (4.2,3)
subject to the boundary conditions
R aT
=0 = = _—
y = ¢=0, o 0, ;=0 (4.4,5,6)
aT
y=hiz) = yv=1, e =MT, - T), (4.7,8,9)

where the latter condition on % at y = 0 is equivalent to %% =0= %‘5. Since the heat equation is parabolic

we must specify ‘initial’ data at y = 0 for T and 4, and suggest

3 1
z=0 = 1/,:5(3,_-3-3,3), T = Ty, (4.10,11)

which corresponds to a parabolic velocity profile entering at a uniform temperature. The fouling layer will
probably grow non-uniformly along the length of the plate, and this can be accommodated without difficulty

by the change of variable

I
2= Ty (4.12)

mapping the region onto a rectangle and slightly modifying the coefficients of the governing equations.

The numerical scheme suggested for the fluid velocity would be of the marching type, discretising ¢ with
nodes i = 0,..., N, and z with nodes j = 0,..., Ny. Taking i = 0 as the entry data one would use forward
differences to evaluate %72:—" and %% at 1 = n in terms of the values at ¢ = n — 1,n. This would produce a
non-linear set of difference equations in the z-direction for the T and 1 profiles at ¢ which could be solved
by an iterative Newton-Raphson method. After convergence at each value of ¢ the scheme advances to 1+ 1.
Such an implicit scheme would be stable, with no limit on the size of the z-discretisation as far as stability
is concerned. It may be necessary to incorporate adaptive gridding due to the uncertainty of the location of
the thermal boundary layers.

The equations for T' and C ( if required ) are parabolic, and an excellent method would be a pair of
finite element routines using triangular basis elements. The nature of these equations, being linear except
perhaps in the source terms, means that a fully implicit solution could be implemented very efficiently.

Based on these suggestions, a good program would be structured as three primary subroutines linked
through an overall control handler using error estimation techniques. The subroutines would each solve one
of the equations for fluid velocity, fluid temperature or fouling deposition. The first two routines must be
coupled iteratively because of the temperature dependence of the fluid viscosity, whereas the third component
may be evaluated less frequently — say at ‘real time’ intervals of about one week ( since the whole fouling

process goes from start to completion in approximately two years ).
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5. Averaged Equations.
It is possible to make some estimates of the behaviours likely to be found in our scenario by averaging the

governing equations across the gap width. We introduce a new variable z such that
* .

__ Y
z= ) (5.1)
where g(z) + h(z) = 1, which maps the problem onto the region [0,1] x [0, L]. The continuity equation
becomes
ou Ov du  h'(z)z du 1 dv
3= 1 5y T % he) 5 Th@a Y (5:2)
which may be integrated w.r.t. z across [0, 1] to get
1oy R'(z) ' 8u 1 o
—dz — —_— —_— —dz=0. 5.3
o 5z ° h(z)/o"azd"*h(z) o 82270 (5:3)

Writing 7 = fol udz, and using the result %(uz) —u= z%’z-‘-, together with the boundary conditions v = 0

at 2 = 0,1 we see that

ou A 19 ]
— I = — [hTl = 0. 5.
7 + Pl hg=0 = e [pE}=0 (5.4)
The momentum equation P, = (puy ), becomes
20P 8 [ bu '
h 'é; = -a—z— (u:9—2_> y (5.5)

where £ -7 = 0. Using 5 0“ = 0 at z = 0 we integrate this from 0 to z to give

28P_ du Ouy _ bu
h a: "oz (TO)EEJO_#Bz’

and averaging over z € [0, 1] produces the equation

1
hng/ zdz = u%‘-dz
e * - (5.7)

—[,uu]l—/lu?-ﬁdz——- u —u%
T J, Y F T THoM T UGS

which gives us the average momentum equation

du 1,,8P
‘u~a—z- + oUo + -2-h '5; =0; (5.8)

here uc, p. and T, are the centreline velocity, viscosity and temperature, and %‘f = _g%a_z’ is the change of

viscosity w.r.t. 2.

Finally, consider the heat equation. Noting that T(uz + vy) = 0, we may write it in conservative form

. ¢€Pe (%(uT) + (vT)) ZyT (5.9)
d(uT) h'(z)z 8(vT) 1 8(vT)\ _ 1 &°T
EPC( 8z h(z) 0z ' ha) 85 ) mep oz (5.10)
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Integrating this over z € [0, 1] using the relation 28(uT)/dz = 9(zuT)/dz — uT, yields the averaged heat

equation 5 W(a)
— ——h(z 1 6T A '
e (00 + 505 ) = i 7)o = o ® =) !

where A = K/(1 - h(z) + lp) as usual.

These results may be exploited by assuming that u and T have some particular parametric form,
performing the averages, then solving to find particular values for the parameters. The use of this type of
model is that its simple 1-dimensional nature makes it amenable to very rapid numerical calculations, so
that it could be used as the basis for developing real-time instrumentation to monitor fouling — provided
the more sophisticated model is first used to relate the thickness of the layer to observable properties such

as the outlet pressure and temperature.

Conclusion.

In this report we have developed a model for the coupled flow of oil and heat within the heat exchanger,
and a series of alternate models to describe the fouling process responsible for gradual degradation of the
system’s performance. A averaged model was derived from these fuller descriptions.

In order to develop the fouling model further, additional experimental data is required. We were unable
to examine a heat exchanger to see which regions became clogged fastest and thus partially validate our
model. The exact chemical mechanism should be high-lighted and its kinetics detailed.

Given the above data, we would suggest that the computer programs described in section 4 should be
implemented and calibrated against the known data. This would allow a variety of simulations to be run
to explore the effects of varying plate spacings and lengths — corresponding to different heat exchanger
geometries, It may be possible to estimate the degree of fouling of a heat exchanger by measuring only
the oil inlet pressure and the steam temperature which would allow automatic equipment to be designed
to indicate when performance became unacceptably degraded. The full numerical solutions could perhaps
be employed in the averaged equations to produce simple ‘rule-of-thumb’ tables covering this situation. We
estimate that to go from beginning the programming work to graphical output and comparison of different

operating strategies represents about four months full-time work.
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Appendix 1 : Geometry.
The total oil mass flow rate Q. is given, and we want some estimate of the oil velocity u in the tube bundle.

We define -a local velo'citj by
_  Qou
Poit Ator’
where A, is the total area between the tubes available for fluid flow, and pu; is the oil’s density.

(al.1)

Take a typical unit cell as consisting of the region delineated by lines drawn from the centres of any
three adjacent tubes, and denote its area by A.. We assume that all of the tubes together form a hexagonal
array. We need to calculate the total number of tubes and unit cells for a given value of N, ( the number of
tubes along the mid-plane of the pattern ).

Let Niype« be the total number of tubes in a hexagonal pattern. From simple geometry we get

Neubes = No+2{(No=1)+(No—-2)+...+(N+1)+ N} = No+{No(N,~1)- N, (N.~-1)} = ﬂv—‘?;—l, (al.2)
where we have used the notation N, = (N, — 1)/2 + 1. The total number of unit cells is N, which is given
bx

N = 2(Np=1)42(N,=1)+4{(No=2)+(No=3)+. . . +(Ne+1)+(N,)} = 2(N,—=1)>=2(N,-1)* = %(No—l)z,
(al.3)

sc that we have the relationships

4Nu es — 1 3 2
N, = ,/-—‘—%—, Ne= =(No = 1)*. (al.4,5)

We are give Nyype, = 170, so that N, =~ 15.04, and for convenience we shall take N, = 15, which corresponds
t¢ Nyypes = 169 and N, = 294 cells, with each side of the pattern having N, = 8 tubes. The total area is

given by
Atot = NcAc + 6(Ns - I)Ap, (0.1.6)

and consists of all the triangular unit cells plus a contribution from the peripheral areas adjacent to the

outermost cells, denoted by 4,. Using r = 0.635cm and h = 0.250 cm gives the following typical values

V3

A= 7(0.635+0.250)2—%(0.635)2 =0.045cm?, A, = 2(0.635+0.250)(0.635)

—~Z(0.635)* = 0.049 cm?,
2

(al.7,8)
sc that Ao = 33.807 cm®. Note that the peripheral area is apparently as significant as the inter-tube area.
This emphasises that the details of the geometry are crucial if we are to obtain an accurate estimate of the
total area and the local oil velocity.

We are given Qi1 = 2000gs~!, and pyi; is uncertain but should lie within the limits 0.59gcm=3<
pet <lgem™3, Choosing poi1 = 0.75g cm™2 for definiteness gives a value for u of

2000gs~?

= =T79cms™}, 9
T 0T5gem S x 33.8cm? o om® (al.9)

Based on the uncertainty in p,;, © should lie within the range 60 cms™? to 120 cm s~ — essentially a factor
of 2.
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Appendix 2 : A Previous Model.
The equation; in Section 2 were examined in a different context by Ockendon & Ockendon (Jou.Fl.Mech.,
1977, Vol.83, p177-190, “Variable viscosity flows in heated and cooled channels”), who made an analysis of
entry flow into a channel with a step change in the wall temperature at the entry point.

Their model assumes an infinitely long channel such that the z-scaling is given by

_ pch?U

;7 E=elo (e2.1,2)

Lg

where T is the length, and z is its dimensionless equivalent. In our application the channel is of length L

and we wish to think of z as

zLo _ zpchU
L - k

h
1= zPee, T = TociPee. (a2.3,4)

| 8l

The important limit in the isothermal wall model is
Tock = O3B, (a2.5)
where p, is the dimensionless viscosity at the wall and 8 is defined by
u(T) = exp(-pBT). (a2.6)

Their model demonstrates the transition from an entry region where there is a sharp thermal gradient at the
walls to a fully developed flow where this gradient has evened out throughout most of the fluid. According

to this isothermal wall model, the fluid is heated so that it develops a slipping core region when
Tock ~ BuZB® ~ 0.5, (a2.7)

which in terms of our present scaling implies
z 0.7, (a2.8)

so that the slipping core region is about 70% of the tube length from the entry, and hence most of the fiow
regime is similar to the ‘entry flow’ with respect to the development of thermal boundary layers.
For our case it is also relevant to note that changing the wall boundary condition from isothermal to

heat-flux could have some effect on the distinction between the entry and full developed flow regimes.
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